Autotuning: The Big Questions

John Shalf
Lawrence Berkeley National Laboratory

August 10, 2009

~

A
Frrreer ’m

AERSC ;Off{ce of
/\ | Science
U.S. DEPARTMENT OF ENERGY

APErsC Times They are a Changing

A

. (trends in computer architecture)

Clock Frequency Scaling Has Ended
— Now we double cores every 18 months instead of doubling clock frequency
— Alternate trajectory is manycore (GPUs, etc.): start with hundreds of simpler cores
— Future “speed up” requires strong scaling from explicit parallelism

« Memory capacity per computational element will be decreasing
— Also forces us towards strong scaling, even if you don’t want it
— Requires constant memory footprint in face of exponential scaling
e Memory and communication bandwidth per peak FLOP decreasing
— Old optimization target was to reduce flops (increase communication)
— New optimization target is to reduce communication (increase FLOPS)
o Architectural diversity is increasing (architectural uncertainty)
— Current languages are mis-matched with emerging machine models
— Performance portability is more of a problem than ever
« Load imbalance is increasingly problematic with larger parallelism

 Reliability for largest-scale systems is likely going down

~

7 gff{'ce of 2’%
A cience

U.S. DEPARTMENT OF ENERGY BERKELEY LAB

APErsC Role of Auto-Tuning
anowaL enno mescancn (h Idin g arc hitectural com P I eXIty)

Present higher level of abstraction to hide architectural diversity

— Abstraction of algorithm implementation is a shim for poorly understood (or broken)
abstract machine model

 Automate search through optimization space to achieve performance
portability and strong scaling
— Some focus on search through optimization parameters

— More aggressive schemes (with higher level abstractions) search through
alternate strategies (e.g. super-solvers)

 Automate insertion of memory movement directives (prefetch or DMA)
to economize on memory bandwidth

 Provides abstractions that decouple “cores” from data decomposition
— Currently abstract data layout
— Perhaps can also abstract heterogeneous code (functional partitioning of algorithms)

 Provides abstractions that enable easier hierarchical parallelism
 Could search through alternative balancing strategies?

« Could code generation hide reliability and fault detection methods into
algorithms?

- Og},gg!)q code generation hide energy/performance trade-offs?
> Science

U.S. DEPARTMENT OF ENERGY BERKELEY LAB

== Office of ‘:bl \
Z# Science
DEPARTMENT OF ENERGY

A ErRSC Challenges for Existing Auto-
SCIENTIFIC COMPUTING CENTER TU n I n g I n f r a.St r U Ct U re
Coverage

— Can we cover enough ‘motifs’ using domain-specific frameworks approach?

— Can we offer a sufficient level of abstraction with a loop-oriented “autotuning
compiler” approach?

Parallelization & communication strategy
— Current auto-tuning primarily focuses on scalar opt
— How will we incorporate more variation on parallel strategy?
Search
— Minimizing search space (search pruning)
— Optimizing search strategy (machine learning, dynamic programming).
Improving Interface to users (integrating with apps)
— Creating interfaces for library design experts (rapid re-tuning of libraries)
— Creating domain-optimized interfaces (F77 as a DSL)
— Integrating with existing frameworks (Cactus, Chombo)
— SEJITS (just-in-time specialization of runtime compiled scripting languages)

|u|

TS Generalized Stencil Auto-tuning
SCIENTIFIC COMPUTING CENTER F r am eW O r k
* Ability to tune many stencil-like kernels

— No need to write kernel-specific perl scripts
— Uses semantic information from existing Fortran

e Target multiple architectures

— Search over many optimizations for each architecture
— Currently supports multi/manycore, GPUs

 Better performance = Better energy efficiency

£ Gieniamg / \ / \
AN [:> () [‘> e [> Strategy [:> Code [> [> Search [> A AN
—3 Engines Generators Engines
— - fO5]) | .c .CU
Ref 4 [r— _Se"aI |
I e elarencet " S ntgrn? -tl)_stract _Parallel Eaiin Myrlad of equivalent, (u)r; :g;\:;?fﬁ Best performing
mplementation . yntax tr¢=:_e optimized, implementations problem implementation
epresentation o) Ccuoa) (plus test harness) and configuration
k\J \— N\ m— J N parameters
Y

Transformation & Code Generation

with high-level knowledge
— JuITIILE | |
BERKELEY L

U.S. DEPARTMENT OF ENERGY

4 Multi-Targeted Auto-Tuning

G

NATIONAL ENERGY RESEARCH
SCIENTIFIC COMPUTING CENTER

do k=2,nz-1,1
do j=2,ny-1,1
do i=2,nx-1,1

uNext(i,j, k)=
alpha*u(i,j,k)+
beta*(u(i+1,j,kK)+u(i-1,j,k+
u(i’j+1lk)+u(i!j-1lk)+
u(i ’j s k"’l)"’u(i !j ’k'l)

Divergence

do k=2,nz-1,1
do j=2,ny-1,1
do i=2,nx-1,1

u@d,j,k)=
alpha=(x(i+1,j,k)-x(7-1,3,k) D)+
beta*(y(i,j+1,k)-y(i,3-1,k) D)+
gamma=(z(1,j,k+1)-z(7,7,k-1))

enddo
enddo
enddo

enddo
enddo
enddo .
_“Taplacian
Nehalem
35
10
3,
8 2.5
4 o
‘36- §' 2+
(T TR
S (515»
Al .
1t
2_
0.5
0

Offfaqdais '°

Science

U.S. DEPARTMENT OF ENERGY

Nehalem

Gradient

do k=2,nz-1,1
do j=2,ny-1,1
do i=2,nx-1,1

x(i,3,k)=alpha*(u(i+1,j,k)-u(i-1,3,k))
y(i,3,k)= beta*(u(@3,Jj+1,k)-uG,j-1,k))
z(i,J,kK)=gamma=(u@,Jj,k+1)-uG,j,k-1))
enddo
enddo
enddo

Gradient

N'ehallem

GFiopls

N

4 8 16 0 4

© GT280 =

Ref 1

2 8 16
eads Threads

2 4 8 16 32 64 1282 1 A
CUDA Thread Blookbr F£o4s ""

Framework for Stencil Auto-Tuning
e, (F £ 7 @S domaln-specific language)

 Framework can make code

63 ;‘

maintenance easier [j Reference) v
— Annotated kernels s gemema"on ¢ Parse J
— Integrated verification suites p _ Vv
(Cactus) ' Transformatuop & ol gbstractT
_ _ Code Generation e
* Next: Wizard for reducing work '\ tunaescoes gfesenam
and maintaining kernels specs vV ; _
_ _ _ p AL . L Strategy E:_ngmes_
* Integrate with existing Cactus/ Myriad of Copea) e Fai
equivalent, (seis) GTX280
Chombo frameworks c i“optimized \
. . implementations O
 Enables analysis of inter-kernel \ |,
dataflow to do v \ ey s
- - Search ‘.._. 'xlhro.aﬁq)' CUDA)'H IRTHAN
— schedule for communication (In contaxt of spacifc probiem) '
hiding,

— Jlocal store reuse o

A
— functional partitioning g:,sff),mmg @ @ @
code and

parameters (also generates test harness)

y Office of rrrrrrr
dl Science

m|
U.S. DEPARTMENT OF ENERGY BERKELEY LAB

rvere AUtomatic Search for Multigrid
W ERSC] | |
o S (Cy Chan / Shoalib Kamll)

« Combines auto-tuning with strategy optimization
— Stencil auto-tuner for prolongation, restriction, relaxation operators

— Measure convergence rate for V-cycle vs. bottom solve (estimate at
every level of V-cycle)

— Measure performance of prolongation, restriction, repartitioning,
relaxation operators

« Uses dynamic programming to select optimal combination of V-
cycle, repartion, and bottom solve

 Keyed off of problem-specific numerical algorithm behavior
(not just cycle rate)

« Where else can auto-tuner observe convergence behavior to
auto-select runtime strategy? (supersolvers + autotuners)

P>ZS" Office of ":bl \

1l
24 Science "\
U.S. DEPARTMENT OF ENERGY

g Scheduling For Heterogeneity

. (move towards global search for optimal schedule)

IENTIFIC COMPUTING CENTER

« Most autotuning focuses on standalone kernel
performance

« Heterogeneous systems with non-uniform memory
access need focus on data movement optimization

— This is likely a global (cross-kernel) optimization problem

— Combinatorial explosion of options (is it tractable even with search
optimizations?)

Performance ~\ Power Efficien

Il System Power
Efficiency

il Chip Power
Efficiency

o
(<]

0
°
.
0
]

When G80
communicates
with host
through PCle,
performance
benefits are
.................. greatly
reduced

Il G80/PCIe

Total GFlop/s
] »
o o

MFlop/S/Watt
n
o

N
(]

12

10

VFalls

VFalls

~

53 Office of frreeee ||||

Functional Partitioning

y v

JERSC : ' . :
- (different parallelization strategy for strong scaling without
S(‘.lLl’VIIH(Z(Z()r\\A:’llllN(;‘(ilf\]IlR domain decomposition)

 Need abstraction to decouple notion of “thread” from problem domain
decomposition

« When strong scaling, you eventually run out of ability to further
decompose domains (all ghost-cells in stencil case)
— Then what do you do?

 Functional partitioning
— Have multigrid solver running concurrently with physics in climate code
— Or have subset of cores handle communication or load balancing

 For every machine, you need a different problem partitioning

— Auto-tuners can hide the partitioning strategy (automate search through different
partitioning conformations)

— Need code specification that explicitly identifies concurrent heterogeneous
“functionality” to run concurrently (or use dataflow analysis)

— Load imbalance is not bad if the tail on the imbalance is bounded

« Partitioning search can be extended to heterogeneous
hardware (not just heterogeneous partitioning of code)

 Dataflow scheduling is NOT a problem for humans to solve! .

PZZ=S" Office of ‘:”}l)
o @ Science

||||
U.S. DEPARTMENT OF ENERGY BERKELEY LAB

Search for Optimal

4 . .
SCIENTIFIC COMPUTING CENTER CO m m U n I C atl O n St r at eg y

 Most auto-tuning focuses on serial
optimization (parallel optimization is separate
step)

« Examples of parallel optimization of
collectives (Rajesh), but still distinct from

serial optimizations
— runtime adaptive tuning (rather than offline tuning)

 Optimize inter-processor communication
strategy (requires more substantial algorithm
reorganization to identify legal strategies)
— Not sure if compiler based auto-tuners can do this or

t (challenge . |
R g o) =2

Runtime Adaptive Search for

A/=rSc 8L
SCIERTIEIC GOMPOTING CaNTER CO m m u n I C atl O n St r at eg y

 Most auto-tuning is founded on offline
performance analysis

e Consider runtime adaptive auto-tuning
rather than offline search

~
P>Z=" Office of ‘:bl ‘.h
2l Science "\
U.S. DEPARTMENT OF ENERGY

: m?untime Adaptive Distributed Computation
_— (with Argonne/U.Chicago)

SDSC IBM SP NCSA Origin Array

—
1024 procs 256+128+128
¥ ooxiexiz=1020 5x12x(4+2+2) =480

This experiment:
Einstein Equations (but could be any Cactus application)
Achieved:

First runs: 15% scaling N

Offi f . . . freereeer 3
FC6 0. 2Mee of \wjith new techniques: 70-85% scaling, ~ 250GF o

LaxE Dynamic Runtime Adaptation

Automatically adapt to 90 . ,

bandwidth latency issues _

Application has NO Adapt:

KNOWLEDGE of machines(s) 85 - A=
it is on, networks, etc

Adaptive techniques make
NO assumptions about
network

Adaptive MPI unigrid driver
required NO changes to the
physics components of the
application!! (plug-n-play!)

co
o

Efficiency
N
o

Issues: 70 3 ghosts Compress on! .
— More intellegent adaption

algorithm
— Eg if network conditions 8 2 gh sts i

change faster than I

adaption... / \

60 ' ' - '
0 000 2000

jiterati

= Office of n/m}| \
o4 Science

||||
U.S. DEPARTMENT OF ENERGY BERKELEY LAB

5 Fault Resilience and Load Balance

There are many strategies for load balancing

Difficult problem for users to solve
— Want pervasive instrumentation for fault resilience
— But resulting code is messy and tedious

Perhaps auto-tuners can play a role to insert hooks
for state migration and hide machine-specific load-
balancing strategies

— depends on communication characteristics of system

Extension of search for optimal problem partitioning
for heterogeneous architectures .

IS5, Qtice of ceceesd]
p# Science
U.S. DEPARTMENT OF ENERGY

|u|
:

Load Imbalances and Resilience

< (is managing load-balance a subset of runtime autotuning?)

NA
N IHC (Z()M

« Adaptive Algorithms result in load imbalances

« Fine grained power management & hard fault mgmt. makes
even homogeneous resources look heterogeneous

 Fault resilience introduces inhomogeneity in execution rates
(error correction is not instantaneous)

« Most load balancers are build on poorly understood
heuristics
— Can we automate the search for optimal load-balancing strategy?

— Can we use auto-tuning to hide fault tedious resilience instrumentation?
225 T T T T

—— Jaguar/Catamount XT4
—— Jaguar/Catamount XT3
200 — Franklin/CNL XT4

Runtime

~

5y Office

125 n | L 1 n | L | frrererer

1l
d Scien 0 2000 4000 6000 8000 |
U.S. DEPARTMENT OF ENER(Processor Number BERKELEY LAB

A ERSC Uncertainty Quantlflc_:a_tlon and
Bap— Extended Precision

« Automate insertion of software
extended precision arithmetic for UQ

 Automate insertion of software
extended precision, or optimize all-
reduce collectives (runtime tuning)

~
IS5, Qtice of ceceesd]
2 Science ‘ |
U.S. DEPARTMENT OF ENERGY

L AZXE 3N\ ow the Negative Part of This Presentation

 Which problem are we trying to solve?

— Autotuning is becoming a heavily overloaded term (and we are
rapidly layering on additional requirements)

— Require more disambiguation to move forward productively

e Our Machine Model is Fundamentally Broken

— Is auto-tuning the right way to hide this, or are more fundamental
changes required

.@VV’ Office of r:'_l>| A
2l Science "\|
U.S. DEPARTMENT OF ENERGY

@
U.S. DEPA

fy=-sc Autotuning Disambiguation

RG
1IENTIFIC COMPUTING CENTEF

 Which problem are we trying to solve?
— Automate tuning libraries for expert library designers?
— Create simpler/convenient interfaces for novice scientists?

— Are we trying to create higher-level abstraction for broken
machine model?

— Solution target points to radically different approaches

Office of
Science
RTMENT OF ENERGY

g O€9Mmenting Developer

Developer Roles Domain CS/Coding Hardware
Expertise Expertise Expertise

Application: Assemble solver
modules to solve science
problems. (eg. combine hydro+GR
+elliptic solver w/MPI driver for
Neutron Star simulation)

Solver: Write solver modules to
implement algorithms. Solvers use
driver layer to implement “idiom for
parallelism”. (e.g. an elliptic solver
or hydrodynamics solver)

Driver: Write low-level data
allocation/placement,
communication and scheduling to
iplement,fdiom for parallelism”
sforagivea® dwarf”. (e.g. PUGH)

Y ERSC Strategies

NATIONAL ENERGY RESEARCH
SCIENTIFIC COMPUTING CENTER

« Automating process of library tuning for minor architectural variants
— The compiler approach with loop annotations is a great approach

Bad for domain scientists (who don’'t even know what the params mean), but
great for experts

— Works fine if machine model is just a preturbation of norm
« Making convenient interface for domain scientists

Novices should not be exposed to hardware-based tuning

Even writing “loop nests” is against productivity (go to higher-level abstractions)
Provide “wizard” interfaces to reduce keystrokes to specify solution

Limited coverage, but can we cover enough?

Can we create framework to make it faster to create such application-specific wizards

 Hiding radical machine model differences

.@VV’ Office of ‘:”}l ‘.h
2l Science "\
U.S. DEPARTMENT OF ENERGY

Fortran or C are too imperative (overly specify solution)

Have to infer “intent” of code or do a lot of work to expose constraints to enable
legal transformations

Perhaps C/Fortran are wrong level of abstraction to enable the required
transformations (bigger arch differences force us to higher-level of abstraction to
achieve unity)

~

NATIONAL ENERGY RESEARCH
SCIENTIFIC COMPUTING CENTER

Office of
Science

U.S. DEPARTMENT OF ENERGY

Broken Machine

-~

f(rereer ||||

BERKELEY LAB

T Broken Machine Model

M ERSC

A

e (1S “€XPliCit search” the right approach?)

e QOur Machine Model is Fundamentally Broken

— Is auto-tuning the right way to hide this, or are more fundamental
advances required

— Are compiler-based auto-tuners operating at wrong level of
abstraction to hide fundamental differences in machine model?

e Critique of auto-tuning on serial machines: hides the
fact that we no longer understand what HW is doing

o Is “explicit search” the correct alternative to fixing a
fundamentally broken machine model (and
commensurate fixes to our programming model?)

c/é” Office of ":bl)

Y4 Science
U.S. DEPARTMENT OF ENERGY

|u|
:

A ERSC Evidence Machine Model Is Broken

SCIENTIFIC COMPUTING CENTER (m e m O ry)
« Machine model doesn’t reflect characteristics of emerging
machines

— PRAM model (presumes equal communication costs)

— But on-chip communication is 100x lower latency and 10x higher
bandwidth than off-chip!

— Ignoring these differences results in huge inefficiencies!

 Evidence: Cache-dependent programming model obfuscates
memory locality
— Cache virtualizes main memory addresses

— But difference in cost of data transfer between on-chip vs. off-chip
memory is HUGE

— Wrong to pretend they are the same (and that is what cache forces us

to do)
— Local-store explicitly differentiates between on-chip and off chip memory
addresses, but no abstraction to program it .

P>ZS" Office of ":bl A

1l
24 Science "\
U.S. DEPARTMENT OF ENERGY

5 Evidence of Broken Machine Model

@ A
U.S. DEPA

Office of frereee 3
Science
RTMENT OF ENERGY

Are emerging machine models even commensurable?

OpenCL does not (and fundamentally cannot) target
performance portability
— Its not even on the design targets

— Current evidence suggests that lack of performance portability will
not be fixed by more mature code-generation back end (requires
more fundamental re-write of kernels)

— Means that OpenCL is good as output target for auto-tuners, but
Inappropriate level of abstraction for input target for directive
guided compiler-based auto-tuners

Can we as a community have more than one
programming model (result of incommensurable
abstract machine models)?

Can auto-tuning forestall this undesirable outcomez\

|u|
:

More Evidence of Broken

A/=rSc .
SCIERTIEIC GOMPOTING CaNTER M aC h I n e M O d el

« Domain Decomposition is the primary approach to
parallel speed-up
— Formula is relatively well understood

 Feed-forward pipelines are not very easy to express
— Unbounded side-effects make this complicated

o If we think functional-partitioning and feed-forward
pipelines are important, then there is something
wrong with a pmodel that makes it hard to express

P25 Office of r:'_l>| ‘.h
2l Science "\
U.S. DEPARTMENT OF ENERGY

Sc:ence "\|
U.S. DEPARTME

L Zx3dUsing Functional/Dataflow Approach

Make cost of data movement first-class citizen

Requires understanding of scope of side-effects
— Make code that is more analyzable (functional programming)

— Use strong typed constructs to make analysis easier for
runtime (Ct single-assignment arrays/TStructs)

— Annotate code to identify data (IVY)

Goal: know what memory iIs touched by unit of code
— Runtime as dataflow work scheduler
— auto-tuning search to optimize logistics of data movement

Side-benefit: easier to identify minimal state to
preserve for checkpoint/rollback

— If you know what data is modified when, then can do fine-
grained recovery of state if unit of execution fails

~Use as foundation for autotuning infrastructure = —

NATIONAL ENERGY RESEARCH
SCIENTIFIC COMPUTING CENTER

-~

Office of ;}I b
Science |'

BERKELEY LAB

U.S. DEPARTMENT OF ENERGY

AErRscC) Source of Load Imbalances

(is managing load-balance a subset of runtime autotuning?)
. Flne grained power management makes even

homogeneous cores look heterogeneous

 Nonuniformities in process technology creates
non-uniform operating characteristics for cores
on a CMP

« To improve chip yield, disable cores with hard
errors (Impacts locality of chip-level
Interconnects)

e Fault resilience introduces inhomogeneity in
execution rates (error correction is not
Instantaneous)

~

c/é” Office of ":bl)

<4 Science
U.S. DEPARTMENT OF ENERGY

|u|
:

Merse Source of Load Imbalances

. ~(is managing load-balance a subset of runtime autotuning?)
. Flne grained power management makes even

homogeneous cores look heterogeneous

 Nonuniformities in process technology creates
non-uniform operating characteristics for cores
on a CMP

« To improve chip yield, disable cores with hard
errors (impacts locality of chip-level
Interconnects)

e Fault resilience introduces inhomogeneity in
execution rates (error correction is not
Instantaneous)

Heterogeneity is going to be pervasive problem for

. . . o
by Office _programmers even If not intentional design! S

1l
24 Science "\|
U.S. DEPARTMENT OF ENERGY

